Search results

Search for "terpene cyclase" in Full Text gives 16 result(s) in Beilstein Journal of Organic Chemistry.

Discovery and biosynthesis of bacterial drimane-type sesquiterpenoids from Streptomyces clavuligerus

  • Dongxu Zhang,
  • Wenyu Du,
  • Xingming Pan,
  • Xiaoxu Lin,
  • Fang-Ru Li,
  • Qingling Wang,
  • Qian Yang,
  • Hui-Min Xu and
  • Liao-Bin Dong

Beilstein J. Org. Chem. 2024, 20, 815–822, doi:10.3762/bjoc.20.73

Graphical Abstract
  • calidoustene C, DrtB from Aspergillus calidoustus functions as a dual-functional enzyme, comprising two domains: a HAD-like hydrolase domain fused with a terpene cyclase domain. Initially, FPP is cyclized into the drimenyl diphosphate in a class II terpene cyclase manner, which is then processed by the
  • utilizing the EFI-genome neighborhood tool (EFI-GNT), sequence alignment, and manual BLAST analysis [33]. Leveraging our previous discovery of SsDMS from Streptomyces showdoensis, we identified a homologous terpene cyclase (sclav_p0068) in S. clavuligerus. This enzyme shares a 50% sequence similarity with
  • ]. Inspection of the BGC identified additional three P450s. Thus, the entire cluster mainly encompasses a DMS (CavC), a Nudix hydrolase (CavB), a class I terpene cyclase (CavF), and three P450s (CavA, CavE, and CavG), and it was designated as the cav cluster (Figure 3a and Table S2 in Supporting Information
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Genome mining of labdane-related diterpenoids: Discovery of the two-enzyme pathway leading to (−)-sandaracopimaradiene in the fungus Arthrinium sacchari

  • Fumito Sato,
  • Terutaka Sonohara,
  • Shunta Fujiki,
  • Akihiro Sugawara,
  • Yohei Morishita,
  • Taro Ozaki and
  • Teigo Asai

Beilstein J. Org. Chem. 2024, 20, 714–720, doi:10.3762/bjoc.20.65

Graphical Abstract
  • of TCs in fungi. Keywords: diterpenoids; fungi; genome mining; labdane; terpene cyclase; Introduction Terpenoids are a structurally diverse family of natural products, including more than 80,000 compounds [1]. In the biosynthesis of terpenoids, terpene cyclases (TCs) add structural diversity and
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Production of non-natural 5-methylorsellinate-derived meroterpenoids in Aspergillus oryzae

  • Jia Tang,
  • Yixiang Zhang and
  • Yudai Matsuda

Beilstein J. Org. Chem. 2024, 20, 638–644, doi:10.3762/bjoc.20.56

Graphical Abstract
  • -MOA as a substrate for dearomatizing farnesylation. Subsequently, we introduced five terpene cyclase genes involved in DMOA-derived meroterpenoid biosynthesis, namely, adrI, trt1, ausL, insA7, and insB2, individually into the A. oryzae transformant that already expresses the four genes constructed
PDF
Album
Supp Info
Letter
Published 20 Mar 2024

Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B

  • Moe Nakano,
  • Rintaro Gemma and
  • Hajime Sato

Beilstein J. Org. Chem. 2023, 19, 1503–1510, doi:10.3762/bjoc.19.107

Graphical Abstract
  • as the C–H–π interaction between the carbocation intermediate and the Phe residue of terpene cyclase in the biosynthesis of sesterfisherol [21], and the intricated rearrangement reaction mechanism promoted by the equilibrium state of the homoallyl cation and the cyclopropylcarbinyl cation in the
PDF
Album
Supp Info
Letter
Published 28 Sep 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Anti-inflammatory aromadendrane- and cadinane-type sesquiterpenoids from the South China Sea sponge Acanthella cavernosa

  • Shou-Mao Shen,
  • Qing Yang,
  • Yi Zang,
  • Jia Li,
  • Xueting Liu and
  • Yue-Wei Guo

Beilstein J. Org. Chem. 2022, 18, 916–925, doi:10.3762/bjoc.18.91

Graphical Abstract
  • shifts led to aristolane-type carbocation intermediate G, which was further deprotonated to afford 9-aristolene (H) [29]. Multiple-step oxidation on H furnished the structure of 3. The terpene cyclase catalyzed the cyclization of cadinene-type sesquiterpenes using FPP as the substrate, which is first
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2022

Understanding the role of active site residues in CotB2 catalysis using a cluster model

  • Keren Raz,
  • Ronja Driller,
  • Thomas Brück,
  • Bernhard Loll and
  • Dan T. Major

Beilstein J. Org. Chem. 2020, 16, 50–59, doi:10.3762/bjoc.16.7

Graphical Abstract
  • , we compared the energy profiles of the terpene cyclase CotB2 reaction obtained in the gas phase and using an active site model. The calculations used identical QM methods, facilitating a direct comparison. We presented evidence for the important role played by the active site residues in CotB2 on the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2020

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • . Keywords: bacterial sesquiterpenes and diterpenes; cytochrome P450; pathway engineering; synthetic biology; terpene biosynthesis; terpene cyclase; Introduction Evolutionary diversification of terpene biosynthetic pathways has resulted in the largest and most structurally diverse class of specialized
  • a linear polyene with branching methyl groups that form the core hydrocarbon structure in a single enzyme-catalyzed step [9]. The enzyme, which is called terpene cyclase, holds the linear methyl-branched polyene in a defined conformation that initiates a series of carbocation-driven cyclizations and
  • placed on terpene pathways from bacteria, as their biosynthetic pathways usually have the genes encoding the terpene cyclase and modifying enzyme in close proximity, which simplifies both analysis and pathway engineering. The review will begin with a brief description of terpene families with a special
PDF
Album
Supp Info
Review
Published 29 Nov 2019

Harnessing enzyme plasticity for the synthesis of oxygenated sesquiterpenoids

  • Melodi Demiray,
  • David J. Miller and
  • Rudolf K. Allemann

Beilstein J. Org. Chem. 2019, 15, 2184–2190, doi:10.3762/bjoc.15.215

Graphical Abstract
  • -FDPs to sesquiterpenoids that may have applications in healthcare and agriculture. These results inform us of both the utility and limitations that non-natural functional groups have upon terpene cyclase-catalysed reaction cascades supporting the design of future biocatalytic syntheses. In particular
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2019

Bipolenins K–N: New sesquiterpenoids from the fungal plant pathogen Bipolaris sorokiniana

  • Chin-Soon Phan,
  • Hang Li,
  • Simon Kessler,
  • Peter S. Solomon,
  • Andrew M. Piggott and
  • Yit-Heng Chooi

Beilstein J. Org. Chem. 2019, 15, 2020–2028, doi:10.3762/bjoc.15.198

Graphical Abstract
  • biosynthetic gene cluster (tpc) for terpestacin (12) has been recently identified from Bipolaris maydis [36]. A didomain sesterterpene synthase (tpcA) with a terpene cyclase domain and polyprenyltransferase domain was demonstrated to be responsible for the production of the sesterterpene backbone of 12. A
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2019

Inherent atomic mobility changes in carbocation intermediates during the sesterterpene cyclization cascade

  • Hajime Sato,
  • Takaaki Mitsuhashi,
  • Mami Yamazaki,
  • Ikuro Abe and
  • Masanobu Uchiyama

Beilstein J. Org. Chem. 2019, 15, 1890–1897, doi:10.3762/bjoc.15.184

Graphical Abstract
  • these two methyl groups are critical for the preorganization of GFPP in the biosynthetic pathways leading to sesterfisherol and quiannulatene. Keywords: biosynthesis; carbocation; DFT; substrate recognition; terpene cyclase; Introduction Terpene synthases are thought to have four main roles: (i
  • terpene cyclase active site [3][5][6]. Although many terpene cyclases are known [6][7][8][9][10], it is still challenging to identify the precise initial conformation of the oligoprenyl diphosphate substrate in the active site, even by X-ray crystal structure determination. This is because the substrate
  • can sometimes bind to the active site in an unreactive conformation [11]. Recently, Siegel and Tantillo reported an innovative method for predicting the docking mode of carbocation intermediates in terpene cyclase [12][13], based on QM calculation and computational docking with the Rosetta protein
PDF
Album
Supp Info
Letter
Published 07 Aug 2019

Stereochemical investigations on the biosynthesis of achiral (Z)-γ-bisabolene in Cryptosporangium arvum

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2019, 15, 789–794, doi:10.3762/bjoc.15.75

Graphical Abstract
  • enantiomers of NPP, which is surprising in the light of the fact that these reactive tertiary allylic diphosphates were often found to result in a complex mixture of terpene cyclase products and Mg2+-catalysed spontaneous hydrolysis products for other TSs [29][30]. While the reaction with (R)-NPP leads to
PDF
Album
Supp Info
Letter
Published 27 Mar 2019

Herpetopanone, a diterpene from Herpetosiphon aurantiacus discovered by isotope labeling

  • Xinli Pan,
  • Nicole Domin,
  • Sebastian Schieferdecker,
  • Hirokazu Kage,
  • Martin Roth and
  • Markus Nett

Beilstein J. Org. Chem. 2017, 13, 2458–2465, doi:10.3762/bjoc.13.242

Graphical Abstract
  • Biology, Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany 10.3762/bjoc.13.242 Abstract The genome of the predatory bacterium Herpetosiphon aurantiacus 114-95T harbors a number of biosynthesis genes, including four terpene cyclase genes. To identify the terpenes biosynthesized from H
  • numerous bacterial terpene cyclase genes [2][3]. Both in vitro and in vivo approaches involving recombinant enzymes are commonly pursued for their functional characterization [4]. Care must be taken, however, in interpreting the results of these analyses, as the products of terpene cyclases are often
  • subject to enzymatic modifications in their native producers. The exclusive testing of a terpene cyclase might hence unveil a biosynthetic intermediate rather than the final product of a secondary metabolite pathway [5][6]. To avoid this problem, we here describe a method for the identification of
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2017

Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems

  • Katarina Kemper,
  • Max Hirte,
  • Markus Reinbold,
  • Monika Fuchs and
  • Thomas Brück

Beilstein J. Org. Chem. 2017, 13, 845–854, doi:10.3762/bjoc.13.85

Graphical Abstract
  • diversity of terpene products is obtained by precise modulation of cyclization and rearrangement steps performed by terpene cyclase enzymes [31], initial functional groups are introduced by hydroxylation of the carbon backbone with highly specific P450 monooxygenases [42][43][44]. At present, terpene
PDF
Album
Review
Published 08 May 2017

Mechanistic investigations on six bacterial terpene cyclases

  • Patrick Rabe,
  • Thomas Schmitz and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2016, 12, 1839–1850, doi:10.3762/bjoc.12.173

Graphical Abstract
  • terpene cyclases from bacterial genomes. Altogether, a number of ca. 1000 terpene cyclase genes are found in the genomes of sequenced bacteria [10], and about 50 bacterial terpene cyclases have so far been characterised for their products [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27
  • bacterial [28][35] and fungal [36][37] terpene cyclases. Results and Discussion Incubation of a recombinant terpene cyclase from Streptomyces viridochromogenes DSM 40736 (NCBI accession number WP_039931950) with farnesyl diphosphate (FPP) yielded a single product that was identified as α-amorphene (1
  • established the structure of T-muurolol (2). The absolute configuration was determined as (1R,6S,7R,10R)-(+)-T-muurolol (2) from its optical rotary power ([α]D23 = +99.4 (c 1.10, CH2Cl2)). This is the same compound as was reported from a terpene cyclase from Streptomyces clavuligerus (accession number
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2016

The EIMS fragmentation mechanisms of the sesquiterpenes corvol ethers A and B, epi-cubebol and isodauc-8-en-11-ol

  • Patrick Rabe and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2016, 12, 1380–1394, doi:10.3762/bjoc.12.132

Graphical Abstract
  • carry a labelling (>99% 13C) in specific positions that can easily be located, if the cyclisation mechanism of the terpene cyclase is known. Furthermore, 13C NMR spectroscopy can be used to experimentally locate the labelling if the cyclisation mechanism is unidentified. As we have shown in two previous
  • [16][17]. In the present study we have used the same approach to investigate the fragmentation mechanisms for corvol ethers A and B, two sesquiterpene ethers with unique carbon skeletons that are made by a terpene cyclase from Kitasatospora setae [18], and the sesquiterpene alcohols epi-cubebol and
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2016
Other Beilstein-Institut Open Science Activities